

Pierwsze kroki z FPGA (7) Termometr z analogowym sensorem i wyświetlaczem 7-segmentowym

Przedstawiamy kolejną kompletną aplikację MAXimatora, w której spełnia on (a dokładniej – zastosowany w MAXimatorze układ FPGA) cyfrowego termometru, wyświetlającego temperaturę otoczenia zmierzoną za pomocą sensora STLM20 na 4-cyfrowym, multipleksowanym wyświetlaczu LED. W projekcie zastosowano m.in. wbudowany w FPGA MAX10 przetwornik ADC, który służy do konwersji sygnału analogowego do postaci cyfrowej.

Działanie projektu zaimplementowanego w FPGA najlepiej wyjaśni schemat blokowy pokazany na **rysunku 1**. Na wejście jednego z kanałów ADC wbudowanego w FPGA jest podawany sygnał napięciowy z wyjścia sensora STLM20. Przetwornik przetwarza napięcie na 12-bitową wartość cyfrową, następnie za pomocą techniki tablicowania *(Lookup Table)* odczytywana wartość jest konwertowana na wartość wyrażoną w stopniach Celsjusza i wyświetlana na multipleksowanym wyświetlaczu 7-segmentowym. Wyświetlacz LED oraz analogowy sensor temperatury znajdują się na ekspanderze (shieldzie – **fotografia 2**), który wraz z programatorem JTAG jest jednym z elementów wyposażenia promocyjnej wersji MAXimatora.

W **tabeli 1** zestawiono wyprowadzenia FPGA z zestawu MAXimator, które zostały wykorzystane w prezentowanym projekcie.

Blok *my_adc* przekazuje cyfrową wartość odpowiadającą zmierzonej temperaturze do bloku *ROM*, który przelicza ją na wartość w skali Celsjusza zapisaną w kodzie BCD. Moduł *mux wybiera* pojedynczą cyfrę z kodu BCD przekazuje ją do bloku *bcd2seg*, który zapisuje cyfrę w notacji 7-segmentowej. Moduł *counter* opóźnia multipleksowanie oraz służy do wybierania liczb do wyświetlenia. Moduł *demux*, na podstawie wartości otrzymanej z bloku *counter* wybiera odpowiedni wyświetlacz, na którym wyświetlona zostaje cyfra.

Więcej informacji:

Kompletny projekt dla programu Quartus Prime Lite wraz z plikami źródłowymi jest dostępny do pobrania na stronie www.maximator-fpga.org

Tabela 1. Wyprowadzenia FPGA (MAX10), które wyko- rzystano w projekcie prezentowanym w artykule			
Nazwa	Kierunek	Funkcja	
ADC1_15	Wejście	Wejście sygnału analogowego, podłączone do czujnika tempe- ratury. Wejście jest ustawiane w bloku my_adc	
CLK0p	Wejście	Sygnał zegarowy 10 MHz	
Wyprowadze- nia: L16, J15, J16, H15, H16, G15, G16, F16	Wyjście	Piny podłączone do wyświetlacza 7-segmentowego odpowiadające odpowiednio za segmenty: A, B, C, D, E, F, G, DP	
Wypro- wadzenia: E15,E16,D15,D16	Wyjście	Piny podłączone do wyświetlacza 7-segmentowego odpowiadające za wybranie aktywnej cyfry (jednej z czterech)	

Rysunek 1. Schemat blokowy projektu zaimplementowanego w FPGA

Tabela 2. Wejścia i wyjścia modułu my_adc			
Nazwa	Kierunek	llość bitów	Funkcja
CLK	Wejście	1	Sygnał zegarowy
data	Wyjście	12	Przetworzona wartość cyfrowa

Tabela 3. Wejścia i wyjścia modułu ROM				
Nazwa	Kierunek	llość bitów	Funkcja	
address	Wejście	12	Cyfrowa wartość temperatury	
Q	Wyjście	16	Wartość temperatury w skali Celsjusza, zapi- sana w kodzie BCD	

Tabela 4. Wejścia i wyjścia modułu ROM				
Nazwa	Kierunek	llość bitów	Funkcja	
bcd_in	Wejście	16	Temperatura zapisana w kodzie BCD	
Sel	Wejście	2	Decyduje o wyborze fragmentu z wejściowe- go kodu BCD	
bcd_out	Wyjście	4	Pojedyncza cyfra zapi- sana w kodzie BCD	

Funkcje poszczególnych bloków i ich sygnały są następujące: Moduł przetwarza wartość analogową z czujnika temperatury na wartość cyfrową. Wykorzystano w nim komponent *ADC* wygenerowany przy pomocy narzędzia *Qsys* programu *Quartus Prime Lite.* W module można ustawić, który kanał ma być wejściem analogowym przetwornika. W projekcie jest to kanał nr 15 – ADC1_15, co wynika ze sposobu podłączenia sensora STLM20 do wyprowadzeń FPGA. Wejścia i wyjścia tego modułu opisano w **tabeli 2**.

Jest to moduł pamięci ROM, zainicjalizowanej ręcznie utworzonym plikiem *LUT.mif.* Moduł odpowiada za przetworzenie wartości otrzymanej z czujnika temperatury na wartość w skali Celsjusza w kodzie BCD. Przeliczenie jest zrealizowane za pomocą techniki tablicowania (*Lookup Table*). Moduł został wygenerowany przy pomocy IP Core'a *ROM: 1-PORT* dostępnego w programie *Quartus Prime Lite.* Ze względu na znaczne wahania wartości odczytanej z czujnika temperatury w pliku *LUT.mif* nie została

Tabela 5. Wejścia i wyjścia modułu bcd2seg				
Nazwa	Kierunek	llość bitów	Funkcja	
bcd_in	Wejście	4	Cyfra w kodzie BCD	
segment	Wyjście	7	Cyfra w zapisie 7-segmentowym	

Fotografia 2. Maximator z zainstalowaną płytką rozszerzenia2

zamieszczona część dziesiętna wartości przedstawiającej temperaturę (dla każdej wartości część dziesiętna jest równa zero). Wejścia i wyjścia modułu *ROM* opisano w **tabeli 3**.

Jest to multiplekser, który wybiera z kodu BCD pojedynczą cyfrę do wyświetlenia. O wyborze cyfry decyduje wejściowy sygnał *sel*. Wejścia i wyjścia tego modułu opisano w **tabeli 4**.

Moduł otrzymaną cyfrę w kodzie BCD zapisuje w notacji 7-segmentowej. Wejścia i wyjścia tego modułu opisano w **tabeli 5**. Ilość bitów ustawia się w parame-

trze *bits*. Funkcją licznika jest opóźnienie multipleksowania oraz wybór cyfry do wyświetlenia. Wejścia i wyjścia tego modułu opisano w **tabeli 6**.

 Tabela 6. Wejścia i wyjścia modułu counter			
Nazwa	Kierunek	Ilość bitów	Funkcja
CLK	Wejście	1	Sygnał zegarowy
Sel	Wyjście	2	Sygnał sterujący wyborem cyfry

Fotografia 3. Wyniki kilku przykładowych pomiarów temperatury

Tabela 7. Wejścia i wyjścia modułu demux			
Nazwa	Kierunek	Ilość bitów	Funkcja
sel	Wejście	2	Sygnał sterujący wyborem cyfry
digit	Wyjście	4	Sygnał wybierający cyfrę do wyświetlenia
segDP	Wyjście	1	Segment wyświetlacza odpo- wiedzialny za kropkę

Demultiplekser wybiera cyfrę do wyświetlenia, dodatkowo włącza kropkę oddzielającą część dziesiętną wartość temperatury. Wejścia i wyjścia tego modułu opisano w **tabeli 7**.

Przykład został zaimplementowany w zestawie MAXimator za pomocą bezpłatnego narzędzia Quartus Prime Lite (do pobrania na stronie *www.altera.com*), komplet plików jest dostępny do pobrania na stronie *maximator-fpga.org*.

Przemysław Sala

http://m.ep.com.pl Najlepszy Mobilny Adres w Sieci

Image: Contract of the state of the sta

98